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We consider the drift and diffusion properties of periodically driven renewal processes.
These processes are defined by a periodically time dependent waiting time distribution,
which governs the interval between subsequent events. We show that the growth of
the cumulants of the number of events is asymptotically periodic and develop a theory
which relates these periodic growth coefficients to the waiting time distribution defining
the periodic renewal process. The first two coefficients, which are the mean frequency
and effective diffusion coefficient of the number of events are considered in greater
detail. They may be used to quantify stochastic synchronization.

KEY WORDS: periodically driven renewal processes; stochastic synchronization;
stochastic resonance

1. INTRODUCTION

Many dynamical processes in physics, biology and chemistry, although being
inherently continuous, can be reduced to a series of discrete events without losing
much information. Often this reduced description in terms of discrete events
has the additional property, that time intervals between subsequent events are
statistically independent. Such processes are called renewal processes.(1) They are
fully described by a waiting time distribution w(τ ), which governs the statistical
properties of the time intervals τ between two subsequent events. In the simplest
case the probability per unit time, i.e. the rate, for an event to occur is independent
on the time elapsed since the last event. This subclass of renewal processes is called
Markovian, because the event number of such a process as a function of time is a
Markovian stochastic process, called Poisson process. If driven externally, the rate
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can be temporally modulated becoming thus a function of the absolute time t , but
still remains independent on the waiting time τ elapsed since the previous event.

In the general case, the probability per unit time that an event will happen
is not independent of the time already elapsed since the last event. Then a non
exponentially distributed waiting time between subsequent events is observed
which distinguishes these general renewal processes from discrete Markovian
processes.

The concepts of renewal processes have been successfully applied to random
sequences of spiking events in the dynamics of neurons,(3−5) to random walks in
a tilted periodic potential(6) and to the failure times of biological and technical
machineries.(7) In these models the processes which generate the single events
consist of a series of several Markovian steps or possess a priori complicated wait-
ing time densities. For example, the generation of a new spike requires excitation
of the voltage variable over a threshold value which is followed by the spiking and
refractory time where neurons are unable to produce new spikes. Also the ionic
transport through pores involves several steps as diffusional motion followed by
escapes over potential barriers. Molecular motors walk along microtubuli where
sequences of different configurational changes of the proteins realize one forward
step.

There is a long history of studies of stationary renewal processes,(1) i.e.
renewal processes having waiting time densities w(τ ), which do not depend on
the absolute time t . Also stationary situations with multiple events and different
stationary waiting time statistics were studied. Quantities of interest like the mean
event number in a certain period of time or the event number diffusion are known
in terms of the waiting time distribution, because a fully developed theory exists
for these time homogeneous processes.(1,7)

In connection with stochastic resonance (SR) the interest for non station-
ary but periodic processes has grown.(8−10) In particular, Markovian periodically
driven models have been investigated.(11) The two state Markovian theory with non
stationary rates describes successfully the dynamic behavior in bistable situations
as shown in many different studies in various fields of science. However, other
systems like excitable dynamics as used for example to describe the spiking mech-
anism in neuronal systems can no longer be approximated by a simple discrete
Markovian description. If such systems are periodically driven, as is for example
the case in neurons which respond to periodically varying inputs, more general
concepts are needed to describe their behavior. In this paper we study the general
situation of non stationary but periodic renewal processes with arbitrary waiting
time distributions w(τ, t). The periodicity is reflected by a periodic dependence
of the waiting time distribution on the absolute time t of the previous event.

There exist different possibilities to quantify the periodicity of a periodic
stochastic process, or, if one considers this periodicity as induced by an external
periodic signal, the quality of the response of the system to this periodic signal. On
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the one hand, spectral based measures like the spectral power amplification and the
signal to noise ratio have been frequently employed (see Ref. 10 and references
therein). These spectral based response measures where also considered in the
context of periodically driven renewal processes in(16,17) and for a special discrete
state model for excitable dynamics in.(18) To this end the sequence of events has
to be somehow mapped onto a stochastic process, e.g. by considering a sequence
of delta peaks located at the event times or by assigning alternatingly after each
event different values to the process. Another possibility to characterize periodicity
of the process is to consider the drift and diffusion properties of the number of
events. The evolution of the number of events in time can be characterized by two
quantities, the mean frequency of events and the effective diffusion coefficient,
which describes, how the variance of the number of events grows in time and
thus characterizes the regularity of the process. The lower this effective diffusion
coefficient for a fixed mean frequency, the more regular, i.e. periodic, is the system’s
dynamics. Both quantities together may therefore serve as a measure of periodicity
of the process and thus, if this periodicity stems form the influence of a periodic
input, as a measure of stochastic synchronization between the driving signal and
the system dynamics.(12−15,21)

In this paper we present a method to calculate the mean frequency and the
effective diffusion coefficient of a periodically driven renewal process in terms
of its periodically time dependent waiting time distribution w(τ, t). After having
derived the general concepts and results in Sections 2 to 5, we consider two
simple situations, namely general but undriven renewal processes and periodically
modulated rate process, for which an explicit evaluation of the general results
is possible and agrees with the known results. Finally in Sections 7 and 8 we
numerically evaluate our theory for a toy model where the intervals between
subsequent events are governed by a a fixed but periodically varying waiting time
followed by a rate process with constant rate. The results agree with simulations of
the underlying periodic renewal process. Many of the calculations are summarized
in a series of appendices.

2. PERIODICALLY DRIVEN RENEWAL PROCESSES

A periodically driven renewal process is a sequence of events occurring
at times . . . , ti , ti+1, ti+2, . . .. The intervals between two subsequent events are
governed by the waiting time distribution w(τ, t). The first argument τ represents
the waiting time whereas the second argument t denotes the absolute time at which
the last event happened. Therefore, w(τ, ti )dτ is the probability that the event
i + 1 happens in the time interval (ti + τ, ti + τ + dτ ] if event i has happened
at time ti . The dependence of the waiting time distribution w(τ, t) on time t is
due to the periodic driving and thus periodic with the period T = 2π/� of the
signal. Although, in contrast to an ordinary renewal process, the intervals between
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subsequent events are now correlated, it is still only the time of the previous event
which governs the statistics of the following event, which justifies to stick to the
term renewal. Normalization holds at arbitrary time t∫ ∞

0
dτw(τ, t) = 1

A lot of information about these processes is contained in the random number
of events Nt0,t which take place in the interval (t0, t]. For example stochastic
synchronization to the periodic driving can be characterized as an integer relation
between driving frequency and the frequency of events and at the same time, a
decrease in the effective diffusion coefficient of the events, i.e. a more regular
(periodic) behavior.

We will evaluate the mean frequency and effective diffusion coefficient based
on the periodically time dependent waiting time distribution w(τ, t), which defines
the periodically driven renewal process. To this end we consider more generally
the nth cumulants K (n)

t0,t of the event number Nt0,t and define their increment per
time

κ
(n)
t0,t := lim

�t→0

K (n)
t0,t+�t − K (n)

t0,t

�t
= d

dt
K (n)

t0,t . (1)

The first of these coefficients is the mean frequency while the second is the effective
diffusion coefficient. We show that asymptotically

κ (n)(t) := lim
t0→−∞ κ

(n)
t0,t (2)

become periodic functions of time with the period of the external driving.
To this end we introduce following(2,19) the generating functional Lt0,t [v] of

the considered driven renewal process as

Lt0,t [v] =
〈Nt0 ,t∏

i=1

(1 + v(ti ))

〉

where ti are the times of the events in the interval (t0, t]. Then the nth moment
M (n)

t0,t of event number Nt0,t is given by

M (n)
t0,t := 〈

N n
t0,t

〉 = ∂n

∂un
Lt0,t [e

u − 1]
∣∣∣
u=0

. (3)

The generating functional Lt0,t can be expressed in terms of the distribution
functions fs(t1, . . . , ts), which govern the probability

d P = fs(t1, . . . , ts)dt1 . . . dts
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to find one event in each of the intervals (ti , ti + dti ), i = 1, . . . , s regardless of
how many events are outside these intervals, as(2,19)

Lt0,t [v] = 1+
∞∑

s=1

∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .

∫ τs−1

t0

dτs fs(τ1, τ2, . . . , τs) v(τ1) . . . v(τs).

(4)

The generating functional can also be expressed in terms of the correlation func-
tions gs(t1, . . . , ts) as

Lt0,t [v] = exp

[ ∞∑
s=1

∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .

×
∫ τs−1

t0

dτs gs(τ1, τ2, . . . , τs) v(τ1) . . . v(τs)

]
. (5)

Eq. (5) together with Eq. (4) define the correlation functions in terms of the
distribution functions.

According to Eq. (5) the moments Eq. (3) can be expressed as

M (n)
t0,t = ∂n

∂un
exp

[ ∞∑
s=1

Gs(t0, t)(eu − 1)s

] ∣∣∣∣∣
u=0

(6)

where

Gs(t0, t) :=
∫ t

t0

dτ1

∫ τ1

t0

dτ2 . . .

∫ τs−1

t0

dτs gs(τ1, τ2, . . . , τs) .

From formula (6) we can evaluate the corresponding cumulants K (n)
t1,t2 as (see

Appendix A.2)

K (n)
t0,t = ∂n

∂un

∞∑
s=1

Gs(t0, t)(eu − 1)s
∣∣∣
u=0

. (7)

As the considered renewal processes are periodic in time with period T ,
the distribution functions and therefore also the correlation functions are likewise
periodic in time,

gs(τ1, . . . , τs) = gs(τ1 + T , . . . , τs + T ). (8)
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Then the time derivative of the function Gs(t0, t) yields

d

dt
Gs(t0, t) =

∫ t

t0

dτ2 . . .

∫ τs−1

t0

dτs gs(t, τ2, . . . , τs)

= 1

(s − 1)!

∫ t

t0

dτ2 . . .

∫ t

t0

dτs gs(t, τ2, . . . , τs)

= 1

(s − 1)!

∫ t−t0

0
dτ2 . . .

∫ t−t0

0
dτs gs(t, t − τ2, . . . , t − τs)

which can be expressed in the asymptotic limit as

lim
t0→−∞

d

dt
Gs(t0, t) = 1

(s − 1)!

∫ ∞

0
dτ2 . . .

∫ ∞

0
dτs gs(t, t − τ2, . . . , t − τs) .

(9)

To ensure that this limit exists, we additionally suppose that gs(τ1, . . . , τs) de-
creases sufficiently fast to zero for any pair of time difference |τi − τ j | → ∞.
In(2) this property is called cluster property, while for stationary systems this
property is called ergodicity.

According to Eq. (8) the asymptotic time derivative Eq. (9) is a periodic
function in t and thus (cf. Eq. (7)) the coefficients

κ (n)(t) = lim
t0→−∞

d

dt
K (n)

t0,t . (10)

are periodic in time, as well.
The time dependent waiting time distribution can be expressed in terms of

the distribution functions as(2)

w(τ, t) = f1(t + τ ) +
∞∑

s=1

(−1)s

s!

∫ t+τ

t
dt1 . . . dts fs+1(t + τ, t1, . . . , ts).

However, we are faced with the inverse problem, namely to express the distribution
functions fs or likewise the correlation functions gs in terms of the waiting time
distribution w(τ, t) in order to finally evaluate the coefficients κ (n)(t) according to
Eqs. (10) and (7). Such a relation is not known to the authors and even if it exists,
the explicit evaluation of the infinite sum in Eq. (7) will be challenging. Thus to
obtain the κ (n)(t) in terms of the time dependent waiting time distribution w(τ, t)
we have to adopt a different approach.

3. THE MICROSCOPIC MASTER EQUATION

Let us consider the probabilities pk(t) to have had k events up to time t .
Furthermore let jk(t) be the probability flux from state k to state k + 1, i.e. the
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probability per time that the k + 1st event happens at time t . This probability obeys
the continuity equation

d

dt
pk(t) = jk−1(t) − jk(t). (11)

If we further assume as initial condition that event 1 happened at time t0, i.e.
j0(t) = δ(t − t0), the relation between the probability fluxes of the renewal process
can be expressed by the “microscopic” dynamics as (for the undriven case see e.g.
Ref. 20)

jk(t) =
∫ t

t0

dt ′ jk−1(t ′)w(t − t ′, t ′), k ≥ 1. (12)

Using this relation one readily obtains from the continuity Eq. (11)

pk(t) =
∫ t

t0

dt ′ jk−1(t ′)z(t − t ′, t ′), k ≥ 1 (13)

where z(τ, t) = 1 − ∫ τ

0 dτ ′w(τ ′, t) is the probability to wait longer than τ until the
next event, if the last event happened at t . In case of a Markovian renewal process
with time dependent rate γ (t) the probability flux jk is related to the probability pk

by jk(t) = γ (t)pk(t). Thus in this case the dynamics can be completely expressed
in terms of the probabilities pk . In the general case however we need a formulation
in terms of pk and jk as expressed in Eqs. (13) and (12).

The moments of the number of events Ñt0,t in the interval (t0, t] can be
expressed in terms of the pk as

M̃ (n)
t0,t =

∞∑
k=0

kn pk(t). (14)

Note that the moments M̃ (n)
t0,t differ from the moments defined by Eq. (3) since the

corresponding event number Ñt0,t is conditioned on having had an event at time t0
in contrast to Nt0,t . However the asymptotic behavior of both families of moments
agrees.

In principle one can calculate the cumulants from the moments Eq. (14)
to obtain eventually the coefficients κ (n)(t) according to Eq. (10). However, in
practice this is not feasible in general, as one has to calculate an infinite sum
over the pk(t) where each pk , according to Eqs. (13) and (12), is a k-fold integral
involving the waiting time distributions w(τ, t) and the corresponding survival
probabilities z(τ, t).
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Fig. 1. Schematic view of the discrete event dynamics pk (t) and the continuous description in
terms of x .

4. EMBEDDING THE DISCRETE DYNAMICS INTO

A CONTINUOUS ONE

To find a simpler relation between the periodic coefficients κ (n)(t) and the
time dependent waiting time distribution w(τ, t), which governs the microscopic
dynamics, we construct a continuous embedding in the asymptotic limit t0 → −∞.
Consider an envelope P(x, t) of the discrete probabilities pk(t) as a probability
density on a continuous state space. Respecting the normalization we adopt the
relation (cf. Fig. 1)

pk(t) =
∫ k+ 1

2

k− 1
2

dxP(x, t), (15)

which of course does not completely fix the density P(x, t).
The idea is to assign an evolution equation to the continuous probability

distribution P(x, t), such that Eq. (15) remains true in the course of time, if it
was true at some initial time. On the other had this evolution equation should
incorporate the desired quantities κ (n)(t) in a simple way, such that we can relate
them by Eq. (15) to the evolution Eqs. (12) and (13) of the discrete probabilities
and thus to the time dependent waiting time distribution w(τ, t). We will not try
to answer this question for an arbitrary initial preparation of the discrete process
(12) and (13) but consider only the asymptotic regime t0 → −∞. In this limit the
distributions become more and more uniform, and we assume that Eq. (15) remains
valid if all the cumulants of both the discrete probabilities pk(t) and the continuous
probability densityP(x, t) have the same rate of growth κ (n)(t). This is achieved by
assigning a Kramers-Moyal equation to the evolution of the continuous envelope,
whose coefficients coincide with the cumulant growth coefficients κ (n)(t) of the
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renewal process (cf. Appendix A.3,(19)),

∂

∂t
P(x, t) =

∞∑
n=1

(−1)n

n!
κ (n)(t)

∂n

∂xn
P(x, t). (16)

Also the probability current jk(t) in the discrete system is related to the
probability current J (x, t) of the continuous envelope description. According to
the relation between the discrete and continuous probability Eq. (15), the discrete
probability current jk(t) from k to k + 1 is equal to the continuous probability
current J (x, t) at x = k + 1

2 , see Fig. 1,

jk(t) = J
(

k + 1

2
, t

)
. (17)

The continuous probability currentJ (x, t) is related to the probability distribution
P(x, t) by the continuity equation

∂

∂t
P(x, t) = − ∂

∂x
J (x, t). (18)

This equation holds as the evolution of P(x, t) is local in x according to Eq. (16).
Eq. (18) together with Eq. (16) allows to express the probability current J in terms
of the probability density P as

J (x, t) = −
∞∑

n=1

(−1)n

n!
κ (n)(t)

∂n−1

∂xn−1
P(x, t) . (19)

Thus from Eq. (17) we deduce

jk(t) = −
∞∑

n=1

(−1)n

n!
κ (n)(t)

∂n−1

∂xn−1
P(x, t)

∣∣∣
x=k+ 1

2

(20)

Finally we want to mention that the more general embedding of the discrete process

pk(t) =
∫ k+l

k−1+l
dxP(x, t) and jk(t) = J (k + l, t), l arbitrary. (21)

leads to the same results for κ (i)(t), presented in the next section, as the embedding
chosen in Eqs. (15) and (17), which corresponds to choosing l = 1

2 in Eq. (21).
Subsuming, we proposed a continuous envelope description for the discrete

number of events which holds true asymptotically when the distribution of the
number of events becomes more and more uniform. This continuous envelope
density obeys the Kramers Moyal Eq. (16) and behaves like the discrete probabili-
ties according to Eq. (15). In this way the pk(t) can be expressed by the continuous
probability P(x, t) in our further analysis.
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5. THE ASYMPTOTIC DRIFT AND THE DIFFUSION COEFFICIENT

Having related the discrete probabilities pk(t) as well as the discrete proba-
bility flux jk(t) to the continuous envelope density P(x, t), it is now possible to
relate the coefficients κ (n)(t), appearing in the evolution Eq. (16) of the continuous
probability density, to the waiting time distribution w(τ, t) of the renewal process,
involved in the microscopic dynamics (12) and (13). As we are considering the
asymptotic behavior we have to pass to the asymptotic limit in Eq. (13) by shifting
the initial time t0 → −∞, leading to

pk(t) =
∫ ∞

0
dτ jk−1(t − τ )z(τ, t − τ ). (22)

Inserting Eqs. (15) and (20) into the above Eq. (22) we end up with∫ 1
2

− 1
2

d�xP(x − �x, t) = −
∫ ∞

0
dτ z(τ, t − τ )

×
∞∑

n=1

(−1)n

n!
κ (n)(t − τ )

∂n−1

∂xn−1
P

(
x − 1

2
, t − τ

)
(23)

with x = k. The probability P(x − �x, t − τ ) can be expressed in terms of the
probabilityP(x, t) and its derivatives ∂m

∂xm P(x, t) by performing a Taylor expansion
of P(x − �x, t − τ ) around x, t and converting the time derivatives to derivatives
with respect to the state x using the Kramers-Moyal Eq. (16). This results in
(cf. Appendix A.1)

P(x − �x, t − τ ) = P(x, t) + c(1)
t (t − τ,�x)

∂

∂x
P(x, t) + O(2)

with

c(1)
t (t − τ,�x) =

∫ τ

0
dτ ′κ (1)(t − τ ′) − �x .

Above O(2) denotes terms proportional to ∂m

∂xm P(x, t), m ≥ 2.
Equating the coefficients of P(x, t) and ∂

∂x P(x, t) on both sides of
Eq. (23) we end up with∫ ∞

0
dτκ (1)(t − τ )z(τ, t − τ ) = 1 (24)

1

2

∫ ∞

0
dτκ (2)(t − τ )z(τ, t − τ ) =

∫ ∞

0
dτκ (1)(t − τ )

×
[∫ τ

0
dτ ′κ (1)(t − τ ′) − 1

2

]
z(τ, t − τ ). (25)
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Equation (25) can be further simplified using Eq. (24), which leads to∫ ∞

0
dτκ (2)(t − τ )z(τ, t − τ )

=
∫ ∞

0
dτκ (1)(t − τ )

∫ τ

0
dτ ′κ (1)(t − τ ′)z(τ, t − τ ) − 1 . (26)

These two expressions, relating the asymptotic drift and diffusion properties of a
periodically driven renewal process as expressed by κ (1)(t) and κ (2)(t) to its mi-
croscopic properties defined by z(τ, t) present the cornerstone result of our paper.
Equations which govern the higher cumulant growth coefficients κ (n)(t), n ≥ 3
can also be derived using this method by evaluating the coefficients of higher order
derivatives of P(x, t) (for κ (3)(t) see Appendix A.4).

Often one is not directly interested in the number of events but in some
quantity proportional to the number of events, like a phase, which increases by
L = 2π for each event, or a position which increases by some length L = l if
we consider a unidirectional random walk with step-length l whose steps are
governed by the described renewal dynamics. In these cases the i th cumulant
growth coefficient κ (i)(t) is scaled by Li . For κ (1)(t) and κ (2)(t) this is achieved
multiplying the constant term 1 on the right hand side of Eqs. (24), and (26) by L

or L2 respectively.
Finally one may wonder, why it is possible to prescribe a continuous Marko-

vian envelope dynamics to an inherently non Markovian discrete process. The
obvious idea, that the non Markovian nature of the discrete process is rendered
Markovian by being mapped onto an extended continuous state space is mislead-
ing. The point is, that the continuous Markovian process x(t) as described by
Eq. (16) is not an envelope dynamics of the full discrete non Markovian process,
but it only covers the asymptotic behavior of the non Markovian process.

6. COMPARISON WITH KNOWN RESULTS FOR UNDRIVEN

RENEWAL PROCESSES AND PERIODICALLY DRIVEN RATE

PROCESSES

Let us evaluate expressions (24) and (25) for an undriven renewal process,
i.e. z(τ, t) ≡ z(τ ). Then it follows that κ (1)(t) is constant and Eq. (24) leads to

κ (1)(t) = L

〈T 〉
with

〈
T n

〉
:=

∫ ∞

0
dττ nw(τ ).
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To derive this result we have used the fact that∫ ∞

0
dττ nz(τ ) =

∫ ∞

0
dτ

τ n+1

n + 1
w(τ ) = 1

n + 1

〈
T n+1

〉
which holds if z(τ ) decreases sufficiently fast for τ → ∞. Accordingly Eq. (26)
gives

κ (2)(t) = L2

〈
T 2

〉 − 〈T 〉2

〈T 〉3

which agrees with the known results for stationary renewal processes.(1)

The corresponding expression for κ (3)(t) whose derivation is presented in
Appendix A.4 finally is (see Eq. (A.11))

κ (3)(t) = L3 〈T 〉4 − 3
〈
T 2

〉 〈T 〉2 + 3
〈
T 2

〉2 − 〈T 〉 〈
T 3

〉
〈T 〉5 .

Next we consider a periodically driven Markov process, i.e.

w(τ, t) = γ (t + τ ) exp

(
−

∫ t+τ

t
dτ ′γ (τ ′)

)

and

z(τ, t) = exp

(
−

∫ t+τ

t
dτ ′γ (τ ′)

)
.

Then it can be easily shown that Eq. (24) is solved by

κ (1)(t) = Lγ (t).

The first term on the right hand side of Eq. (26) can also be simplified in this case
using integration by parts to give L2. Therefore κ (2)(t) is governed by∫ ∞

0
dτκ (2)(t − τ )z(τ, t − τ ) = L2

which is solved by

κ (2)(t) = L2γ (t).

Finally κ (3)(t) is given by (cf. Eq. (A.11))

κ (3)(t) = L3γ (t).

For more complicated processes with general time dependent waiting time
distributions Eqs. (24) and (26) can only be solved numerically for the periodic
solution.
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7. NUMERICAL SOLUTION IN FOURIER SPACE

As Eqs. (24) and (25) cannot be solved analytically for arbitrary waiting time
distributions w(τ, t − τ ) and corresponding survival probabilities z(τ, t − τ ) one
has to resort to numerical methods. To this end we perform a Fourier expansion
of the periodic function κ (1)(t) and analogously for κ (2)(t),

κ (1)(t) =
∞∑

k=−∞
κ

(1)
k exp(ik�t), κ

(1)
k = 1

T

∫ T

0
dtκ (1)(t) exp(−ik�t), (27)

where � = 2π/T is the frequency of the external driving. We further expand the
survival probability z(τ, t) with respect to the second periodic argument as

z(τ, t) =
∞∑

k=−∞
zk(τ ) exp(ik�t) zk(τ ) = 1

T

∫ T

0
dtz(τ, t) exp(−ik�t)

Abbreviating

zk,l =
∫ ∞

0
dτ zk(τ ) exp(−il�τ ) , hk,l =

∫ ∞

0
dττ zk(τ ) exp(−il�τ ) (28)

Equation (24) can be written as

∞∑
k=−∞

κ
(1)
k zm−k,m = Lδm,0, m = −∞, . . . ,∞ (29)

while Eq. (26) reads

∞∑
k=−∞

κ
(2)
k zm−k,m

= 2
∞∑

k=−∞





 ∞∑

l=−∞,l 	=0

κ
(1)
l κ

(1)
k

il�
(zm−k−l,m−l − zm−k−l,m)


 + κ

(1)
0 κ

(1)
k hm−k,m




−L2δm,0 (30)

The corresponding equation for the third coefficient κ (3)(t) in Fourier space is
presented in Appendix A.4.

These infinite dimensional inhomogeneous linear equations can then be nu-
merically solved, after being truncated to a finite dimensional system.
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Fig. 2. Depending on whether the periodic signal is in the first or second half period the system either
waits the fixed time T0 or T1. In both cases the system waits an additional exponentially with rate γ

distributed time.

8. A SIMPLE TOY MODEL—COMPARISON BETWEEN THEORY

AND SIMULATIONS

Consider the renewal process, where the time between subsequent events
is composed of a fixed waiting time, which depends on the signal phase of the
previous event and a rate process with rate γ . The waiting time distribution is thus
given by

w(τ, t) = θ (τ − T (t))γ e−γ (τ−T (t)). (31)

Suppose further that the fixed waiting time is either T0 or T1 depending on whether
the signal phase of the previous event was within [0, π ) or [π, 2π ), i.e

T (t) =
{

T0 if �t mod 2π ∈ [0, π )
T1 if �t mod 2π ∈ [π, 2π )

(32)

A sketch of this system is shown in Fig. 2 while corresponding waiting time
distribution is plotted in Fig. 3.

Fig. 3. Waiting time distribution of the toy model Eqs. (31) and (32) with T0 = 0.5, T1 = 1.5 and
γ = 2. Depending on the signal phase of the event, the system waits either a long (dashed line) or a
short times (solid line) plus an exponentially distributed time until the next event.
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The corresponding Fourier coefficients zk,l and hk,l as presented in Eqs. (28)
can be analytically evaluated for this waiting time distribution, however the final
results, being too long and at the same time yielding not much information, will
not be presented here. Having evaluated these Fourier coefficients, we calculated
the mean frequency and the effective diffusion coefficient according to Eqs. (29)
and (30) using LAPACK to solve these linear equations. The results are compared
to simulations of the renewal process in Figs. 4 and 5, showing perfect agreement.

The mean velocity κ̄ (1) = 1
T

∫ T
0 dtκ (1)(t) and effective diffusion coefficient

κ̄ (2) = 1
T

∫ T
0 dtκ (2)(t) can be used to characterize stochastic synchronization of

the process to the periodic signal. These synchronization regions are defined by a
rational relation between system frequency and signal frequency and a minimum
of the effective diffusion coefficient. Although this model shows minima of the
effective diffusion coefficient as a function of the driving frequency Fig. 4, these

Fig. 4. Comparison of the period averaged mean frequency κ̄ (1) = 1
T

∫ T
0 dtκ (1)(t) and the period

averaged effective diffusion coefficients κ̄ (2) = 1
T

∫ T
0 dtκ (2)(t) where T = 2π/� is the period of the

signal, for the toy model Eq. (31) with T0 = 0.5, T1 = 1.5 and γ = 2. The solid lines are results of
the theory Eqs. (24) and (26), numerically evaluated according to Eqs. (29) and (30) truncated to
40 coefficients, while the symbols are obtained from direct simulations of the driven renewal process.
The straight lines in the upper plot indicate n : m relations between system frequency and signal
frequency, i.e. frequency locking. Clearly the system does not show this behavior.
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Fig. 5. Comparison of the mean frequency κ (1)(t) and the effective diffusion coefficients κ (2)(t) for
the toy model Eq. (31) with T0 = 0.5, T1 = 1.5 and γ = 2 and � = 1.7. The solid lines are results
of the theory Eqs. (24) and (26), numerically evaluated according to Eqs. (29) and (30) truncated to
20 coefficients, while the symbols are obtained from direct simulations of the driven renewal process.

minima do not correspond to frequency synchronization as the system frequency
and the signal frequency are not proportional. This stands in contrast to a similar
model with a fixed waiting time and a dichotomically periodically modulated rate,
used to describe periodically driven excitable systems.(21) In this model we found
several different n : m synchronization regions. Also the full periodically time
dependent coefficients κ (1)(t) and κ (2)(t) as determined by our theory (24) and
(26) agree with results taken from simulations of the underlying renewal process
Fig. 5. Interestingly the effective diffusion coefficient becomes negative for some
values of the signal phase. However this does not imply that the periodic driving
can be used to concentrate an ensemble of these systems as the period averaged
effective diffusion coefficient κ̄ (2) is always positive.

9. CONCLUSION

We have considered the drift and diffusion behavior of periodic renewal
processes and presented a general theory to express the mean frequency and
effective diffusion constant and also higher order cumulant growth coefficients
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in terms of the underlying time dependent waiting time distribution. The results
of this approach where analytically shown to coincide with known results in the
undriven case. For the periodically driven situation we confirmed the results of the
theory by numerical investigations. We also showed agreement with a different
approach for a more restricted class of renewal processes presented in.(21) The mean
frequency and effective diffusion coefficient may be used to quantify stochastic
synchronization. Taking into account the large amount of systems whose dynamics
can be modeled as renewal processes, we anticipate a widespread applicability
of our results, ranging from synchronization in neurons to the investigation of
transport properties in molecular motors.
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A.1. EXPANSION OF THE PROBABILITY DENSITY GOVERNED BY

A KRAMERS-MOYAL EQUATION

Our aim is to express the phase distribution P(x − �x, t − τ ) in terms of
P(x, t) and its derivatives with respect to x , ∂n/∂xnP(x, t). To this end we start
by expanding P(x − �x, t − τ )) in a Taylor series around x and t ,

P(x − �x, t − τ ) =
∞∑

n=0

∞∑
m=0

(−�x)n(−τ )m

n!m!

∂n+m

∂xn∂tm
P(x, t)

To process the time derivatives we use the Kramers-Moyal Eq. (16) taking care of
the explicit time dependence of κ (i)(t) which leads to

P(x − �x, t − τ ) = P(x, t) −
[
�x +

∞∑
m=1

(−τ )m

m!

∂m−1κ (1)(t)

∂tm−1

]
∂

∂x
P(x, t)

+
[

�x2

2
+ �x

∞∑
m=1

(−τ )m

m!

∂m−1κ (1)(t)

∂tm−1

+ 1

2

∞∑
m=1

(−τ )m

m!

∂m−1κ (2)(t)

∂tm−1
+

∞∑
m=2

(−τ )m

m!

m−1∑
l=1

(
m − 1

l

)

× ∂m−1−lκ (1)(t)

∂tm−1−l

∂ l−1κ (1)(t)

∂t l−1

]
∂2

∂x2
P(x, t) + O(3).

where O(3) denotes third or higher derivatives of P(x, t) with respect to x .
The sums containing the coefficients κ (n)(t) in a linear way be further evaluated,
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leading to

∞∑
m=1

(−τ )m

m!

∂m−1κ (n)(t)

∂tm−1
= −

∞∑
m=0

1

m!

∂mκ (n)(t)

∂tm

∫ τ

0
dτ ′(−τ ′)m

= −
∫ τ

0
dτ ′κ (n)(t − τ ′)

The last term can be simplified to give

∞∑
m=2

(−τ )m

m!

m−1∑
l=1

(
m − 1

l

)
∂m−1−lκ (1)(t)

∂tm−1−l

∂ l−1κ (1)(t)

∂t l−1

=
∞∑

l=0

∞∑
m=0

(−τ )m+l+2

(m + l + 2)!

(
m + l + 1

l + 1

)
∂mκ (1)(t)

∂tm

∂ lκ (1)(t)

∂t l

=
∫ τ

0
dτ ′

∞∑
m=0

(−τ ′)m

m!

∂mκ (1)(t)

∂tm

∫ τ ′

0
dτ ′′

∞∑
l=0

(−τ ′′)l

l!

∂ lκ (1)(t)

∂t l

=
∫ τ

0
dτ ′κ (1)(t − τ ′)

∫ τ ′

0
dτ ′′κ (1)(t − τ ′′)

Thus we eventually arrive at

P(x − �x, t − τ ) = P(x, t) + c(1)
t (t − τ,�x)

∂

∂x
P(x, t)

+ c(2)
t (t − τ,�x)

∂2

∂x2
P(x, t) + O(3) (A.1)

where

c(1)
t (t − τ,�x) =

∫ τ

0
dτ ′κ (1)(t − τ ′) − �x (A.2)

and

c(2)
t (t − τ,�x) = �x2

2
− �x

∫ τ

0
dτ ′κ (1)(t − τ ′)

−1

2

∫ τ

0
dτ ′κ (2)(t − τ ′) +

∫ τ

0
dτ ′κ (1)(t − τ ′)

∫ τ ′

0
dτ ′′κ (1)(t − τ ′′)

(A.3)
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A.2. RELATION BETWEEN MOMENTS AND CUMULANTS OF THE

NUMBER OF EVENTS OF A RENEWAL PROCESS AND ITS

CHARACTERISTIC FUNCTIONAL

Consider the moments M (n) defined by (c.f. eq. (6))

M (n) = ∂n

∂zn
exp

[ ∞∑
s=1

Gs(ez − 1)s

]∣∣∣∣∣
z=0

. (A.4)

Generally the relation between moments and cumulants is given by

∞∑
k=0

zk

k!
M (k) = exp

[ ∞∑
k=1

zk

k!
K (k)

]
. (A.5)

>From Eq. (A.4) we deduce (taking into account the analyticity at z = 0 of the
functions involved)

∞∑
k=0

zk

k!
M (k) = exp

[ ∞∑
s=1

Gs(ez − 1)s

]

and thus according to Eq. (A.5)

∞∑
k=1

zk

k!
K (k) =

∞∑
s=1

Gs(ez − 1)s

from which

K (n) = ∂n

∂zn

∞∑
s=1

Gs(ez − 1)s
∣∣∣
z=0

follows.

A.3. RELATION BETWEEN THE KRAMERS-MOYAL COEFFICIENT

AND THE GROWTH OF THE CUMULANTS

Consider the stochastic process x(t) governed by

∂

∂t
P(x, t) =

∞∑
n=1

(−1)n

n!
κ (n)(t)

∂n

∂xn
P(x, t) (A.6)

We are interested in the grows of the cumulants K (n)(t) of x(t). The moments

M (n)(t) = 〈
xn(t)

〉 =
∫ ∞

−∞
dxxnP(x, t)
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obey

d

dt
M (n)(t) =

∫ ∞

−∞
dxxn ∂

∂t
P(x, t)

=
∞∑
j=1

(−1) j

j!
κ ( j)(t)

∫ ∞

−∞
dxxn ∂ j

∂x j
P(x, t)

Assuming further that P(x, t) decreases sufficiently fast for x → ±∞ such that

lim
x→±∞ xnP(x, t) = 0

the above expression can be evaluated using integration by parts to give

d

dt
M (n)(t) =

∞∑
j=1

κ ( j)(t)

j!

∫ ∞

−∞
dx

[
∂ j

∂x j
xn

]
P(x, t)

=
n∑

j=1

κ ( j)(t)

j!

∫ ∞

−∞
dx

n!

(n − j)!
xn− jP(x, t)

=
n∑

j=1

κ ( j)(t)

(
n

j

)
M (n− j)(t) (A.7)

Now the moments and cumulants are related by

∞∑
k=0

zk

k!
M (k)(t) = exp

[ ∞∑
k=1

zk

k!
K (k)(t)

]
. (A.8)

and thus by differentiating this equation with respect to t

∞∑
k=0

zk

k!

d

dt
M (k)(t) =

∞∑
k=1

zk

k!

d

dt
K (k)(t)

∞∑
k=0

zk

k!
M (k)(t).

Inserting the moments dynamic Eq. (A.7) into the left hand side of this equation,
it can be easily checked that

d

dt
K (n)(t) = κ (n)(t).
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A.4. THE THIRD CUMULANT GROWTH COEFFICIENT κ (3)(t)

The third coefficient κ (3)(t) can be evaluated by equating the coefficients
corresponding to the order ∂2

∂x2 P(x, t) in Eq. (23). Inserting the expansion (A.1)
into this equation leads to

1

6

∫ ∞

0
dτκ (3)(t − τ )z(τ, t − τ ) (A.9)

= 1

2

∫ ∞

0
dτκ (2)(t − τ )

[∫ τ

0
dτ ′κ (1)(t − τ ′) − 1

2

]
z(τ, t − τ )

−
∫ ∞

0
dτκ (1)(t − τ )

[
1

6
− 1

2

∫ τ

0
dτ ′κ (1)(t − τ ′) − 1

2

∫ τ

0
dτ ′κ (2)(t − τ ′)

+
∫ τ

0
dτ ′κ (1)(t − τ ′)

∫ τ ′

0
dτ ′′κ (1)(t − τ ′′)

]
z(τ, t − τ ) (A.10)

or using Eqs. (24) and (26)

∫ ∞

0
dτκ (3)(t − τ )z(τ, t − τ )

=
∫ ∞

0
dτ z(τ, t − τ )

[
3κ (2)(t − τ )

∫ τ

0
dτ ′κ (1)(t − τ ′) + 3κ (1)(t − τ )

×
∫ τ

0
dτ ′κ (2)(t − τ ′) − 6κ (1)(t − τ )

×
∫ τ

0
dτ ′κ (1)(t − τ ′)

∫ τ ′

0
dτ ′′κ (1)(t − τ ′′)

]
+ 1 (A.11)

Generally, the periodic solution

κ (3)(t) =
∞∑

k=−∞
κ

(3)
k exp(ik�t), κ

(3)
k = 1

T

∫ T

0
dtκ (3)(t) exp(−ik�t),
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of Eq. (A.11) can be numerically obtained in Fourier space as a solution of the
(infinite) set of linear equations

∞∑
k=−∞

κ
(3)
k zm−k,m

= 3
∞∑

k=−∞





 ∞∑

l=−∞,l 	=0

κ
(2)
l κ

(1)
k + κ

(1)
l κ

(2)
k

il�
(zm−k−l,m−l − zm−k−l,m)




+
[
κ

(2)
0 κ

(1)
k + κ

(1)
0 κ

(2)
k

]
hm−k,m


 − 6

∞∑
k=−∞





 ∞∑

l=−∞,l 	=0

∞∑
j=−∞, j 	=0,−l

× κ
(1)
k κ

(1)
l κ

(1)
j

j�2

(
1

l
(zm−k−l− j,m− j − zm−k−l− j,m− j−l )

+ 1

j + l
(zm−k−l− j,m− j−l − zm−k−l− j,m)

)


+
∞∑

l=−∞,l 	=0

κ
(1)
k κ

(1)
l κ

(1)
−l

l2�2

(
zm−k,m − zm−k,m−l + il�hm−k,m

)

+
∞∑

l=−∞,l 	=0

κ
(1)
k κ

(1)
l κ

(1)
0

il�
(hm−k−l,m−l − hm−k−l,m) + κ

(1)
k κ

(1)
0 κ

(1)
0 jm−k,m




+L3δm,0. (A.12)

Fig. 6. Comparison of κ̄ (3) = 1
T

∫ T
0 dtκ (3)(t), where T = 2π/� is the period of the signal, for the toy

model Eq. (31) with T0 = 0.5, T1 = 1.5 and γ = 1.7. The solid lines are results of the theory Eq. (A.11)
numerically evaluated according to Eq. (A.12) truncated to 20 coefficients, while the symbols are
obtained from direct simulations of the driven renewal process. Both results agree very well.
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where we used the Fourier decompositions of κ (1) and κ (2) according to Eqs. (27)
while zk,l and hk,l are defined in Eq. (28) and jk,l is defined as

jk,l = 1

2

∫ ∞

0
dττ 2zk(τ ) exp(−il�τ ).

For the toy model introduced in Section 8 we have evaluated the period average
of κ (3)(t) both according to the theory, Eqs. (A.11) and (A.12) and from direct
simulations of the driven renewal process. Both results agree very well (Fig. (6)),
thus confirming our theory.
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